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ABSTRACT 
This paper presents a new terrain traversability mapping method integrated 

into the Robotic Technology Kernel (RTK) that produces ground slope 

traversability cost information from LiDAR height maps. These ground slope maps 

are robust to a variety of off-road scenarios including areas of sparse or dense 

vegetation. A few simple and computationally efficient heuristics are applied to the 

ground slope maps to produce cost data that can be directly consumed by existing 

path planners in RTK, improving the navigation performance in the presence of 

steep terrain. 
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1. INTRODUCTION 
Military unmanned ground vehicles 

(UGVs) face a wide variety of off-road 

terrain features that are difficult to perceive 

and navigate safely. Conventional techniques 

for perceiving terrain in commercial 

autonomy systems assume a locally flat and 

smooth ground plane, simplifying the 

problem of segmenting the traversable and 

non-traversable space. This flat-world 

assumption works even in cases of steep 

grade if the UGVs control systems 

compensate for grade as a normal disturbance 

input; however, the assumption breaks down 

in off-road environments where it may be 

desirable to navigate cautiously on areas of 

steep grade or otherwise incorporate this 

information into a path planner that can 

intelligently choose between navigating steep 

and flat terrain. 

The Ground Vehicle Systems Center 

(GVSC) Robotic Technology Kernel (RTK), 

a Robotic Operating System (ROS)-based 

library of modular software packages used 

for autonomous navigation in off-road 

environments, provides multiple path 

planners that can easily incorporate terrain 

gradient information to improve their 

existing off-road navigation capability for 

UGVs. Navigation performance is heavily 

dependent on the quality of perception 
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information provided by the autonomy 

system. RTK currently relies on Light 

Detection and Ranging (LiDAR) sensors for 

many perception tasks, including the 

detection of traversable and non-traversable 

(i.e., ground and non-ground) areas and 

segmenting them into maps. Some naïve 

approaches to generating terrain gradient 

maps, or slope maps, from the segmented 

ground map showed promise in simulation 

and on flat, smooth surfaces such as an 

asphalt road; however, the presence of either 

sparse or dense vegetation, which is common 

for many off-road scenarios, gave very 

inaccurate and unpredictable results. To 

solve this problem within the RTK 

architecture, SwRI developed a novel method 

for slope mapping that rejects the kind of 

noise induced by vegetation and thereby 

enables improved off-road navigation 

performance.  
 

2. BACKGROUND 
The autonomy literature contains many 

approaches to off-road traversability analysis 

for UGVs, from simple heuristics to end-to-

end machine learning. Each approach makes 

tradeoffs in precision, computational 

efficiency, and modularity. The approach 

taken in this paper most closely resembles the 

simpler heuristic-based methods to maximize 

the computational efficiency and modularity 

properties which are desirable for current 

RTK platforms. 

Machine learning techniques are 

increasingly popular tools for solving 

problems in automated driving. Even some 

older, classic machine learning techniques 

like support vector machines (SVMs) have 

been successfully applied to traversability 

analysis. McDaniel et al. [1] used an SVM 

classifier to roughly segment LiDAR point 

clouds into “ground” points and discard extra 

points associated with low vegetation. 

Nguyen et al. [2] show a much more complex 

end-to-end approach using modern deep 

learning frameworks to build a multi-modal 

model that directly learns steering output 

commands from LiDAR point cloud and 

RGB camera inputs. Guastella and Muscato 

[3] provide many more examples of machine 

learning techniques applied to navigation in 

off-road or other unstructured environments 

in their extensive survey. All these methods 

provide promising results, but they require 

extensive training and must be tailored to the 

specific UGV they operate on. Additionally, 

many state-of-the-art machine learning 

techniques require computing hardware that 

is not available for all RTK platforms to run 

efficiently for navigation. 

Other researchers have developed many 

computationally efficient heuristics for 

filtering unwanted environmental 

components from LiDAR data. Andujar et al. 

[4] noted that differences in LiDAR intensity 

returns could help differentiate between 

different types of vegetation and soil. This 

result implies that for specific operating 

environments it may be possible to 

discriminate between vegetation and ground 

simply using intensity thresholds, but this 

solution would not generalize well for a 

versatile autonomy system like RTK. Goodin 

et al. [5] provide a method for calculating 

traversability based on soil condition, 

vegetation density, surface roughness, and 

surface slope. The surface slope and the 

surface roughness are calculated using 

LiDAR data; however, soil condition and 

vegetation density must be known for a given 

environment or estimated from another 

source, making the metric inappropriate to 

use directly in RTK. Shan et al. [6] propose a 

traversability mapping approach using a 

Bayesian generalized kernel to fill in sparse 

surface data from a height map and calculate 

a traversability metric using step heights, 

surface slope, and surface roughness. Their 

approach is similar in nature to the 

traversability mapping method proposed in 

this paper. 
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In this work, we propose a traversability 

mapping method with a heuristic for 

vegetation detection. This method uses 

LiDAR-generated height maps to generate 

slope measurements around the vehicle. 

These slope measurements and measurement 

uncertainty values are combined in a map 

update step to produce a filtered slope map. 

The filtered gradient of the surface roughness 

is then used to determine areas that are likely 

real slopes in the terrain versus areas that 

appear to have large changes in slope due to 

vegetation. This slope map data is then fused 

into an existing cost map used by path 

planners in RTK to improve navigation 

capabilities. 

 

3. SLOPE MODELING 
Existing vehicle autonomy hardware 

architectures present several unique 

constraints that preclude many common 

approaches. Unless a dedicated machine 

exists, the computer running the slope 

computations likely runs many other 

processes. Minimizing computational effort 

of new processes running on this machine 

must be prioritized to keep other critical 

processes running as expected. Many of the 

machine learning approaches are 

computationally intensive and would fail this 

constraint. Additionally, these computations 

must be robust to expected errors and 

inaccuracies in the system. 

Errors can be introduced at several points in 

typical LiDAR processing and localization 

algorithms for autonomous vehicles. LiDAR 

segmentation algorithms filter out certain 

noise and obstacle points, but occasionally 

some low object points can slip through the 

filter. This environment segmentation error is 

most often observed with dense or cluttered 

vegetation, where differentiating between 

thick undergrowth and ground is challenging. 

Additionally, the vehicle may experience 

short-term pitch and roll movements that are 

not reflected in the localization. Subsequent 

point clouds may then be misaligned. Small 

pitch and roll errors may also accumulate 

over time, so that if the vehicle navigates in a 

loop, overlapping point clouds may be offset 

vertically. 

 

3.1 Proposed Method 
The method used to generate slopes ensures 

protection from pitch and roll errors by 

considering each point cloud individually and 

computing instantaneous slopes. The LiDAR 

processing pipeline sorts LiDAR points into 

ground and object point clouds, and only the 

ground point cloud is used for slope 

computation. 

When a ground point cloud is received, the 

data is first discretized into a 2D grid of cells 

centered on the vehicle, where the ground 

height of a cell, j, is the average of the ground 

height of all points within the cell. Note that, 

in standard operation, each cell has a side 

length of 0.3m. 

 

 
𝒉𝒊 =

∑ 𝒉𝒋

𝒏𝒋
 (1) 

 

The point cloud usually contains data in 

several sparse rings, as the LiDARs send 

pulses in discrete vertically-separated rings. 

The heights of empty cells between the rings 

must be approximated. Various hole filling 

methods exist; however, approaches that 

perform a weighted average of all filled cells 

within a local neighborhood may be 

prohibitively expensive, as the local 

neighborhood must have filled cells around 

the empty cell for an accurate average. 

Instead of examining the entire 

neighborhood, we examine the cells in a 

direct line left and right of the empty cell, and 

above and below the empty cell in the height 

map grid. If full cells can be found within a 

user-configurable distance both above and 

below, or left and right, the weighted average 

of the filled cells is used for the height of the 
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empty cell. If both left/right and above/below 

pairs are filled, the weighted average of the 

interpolated heights is used.  

    The operation is performed twice to ensure 

adequate hole filling. While this hole filling 

method is computationally quick, it can 

propagate errors due to single inaccurate 

cells. To compensate, a uniform smoothing 

operation is performed on the instantaneous 

height map with a 3x3 kernel. The 

instantaneous height maps are not aggregated 

directly, as roll and pitch drift can lead to 

discontinuous edges between heightmaps. 

Instead, the gradient of the instantaneous 

heightmap is computed using a 3x3 Sobel 

operator. 

 

 𝝏𝒙 = [
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

] (2) 

 𝝏𝒚 =  [
𝟏 𝟐 𝟏
𝟎 𝟎 𝟎

−𝟏 −𝟐 −𝟏
] (3) 

 
The 3x3 Sobel operator, while primarily used 

for edge detection in images, here produces 

accurate computations of the ground slope. 

The instantaneous gradients are then 

aggregated with a one-dimensional Kalman-

style update. The confidence of the 

instantaneous slope is estimated with an 

experimentally determined heuristic function 

of the distance d from the vehicle to the cell 

under consideration. Note that the final term 

models decreased accuracy further than 20 

meters from the vehicle. 

 

 
𝒗𝒏𝒆𝒘(𝒅) = 𝟏 + 𝟎. 𝟏 ∗ 𝒅 + 𝟓

∗ 𝐦𝐚𝐱 (𝟎, 𝒅 − 𝟐𝟎) (4) 

 

The aggregated slope is computed by first 

finding the Kalman gains 𝑘𝑚 and 𝑘𝑎 for the 

magnitude and angular components of the 

slope from the corresponding variances 𝑣𝑚 

and 𝑣𝑎 at time 𝑖. 

 

 
𝒌𝒎,𝒊 =  

𝒗𝒎,𝒊

𝒗𝒎,𝒊 + 𝒗𝒏𝒆𝒘
 

(5) 

 
𝒌𝒂,𝒊 =  

𝒗𝒂,𝒊

𝒗𝒂,𝒊 + 𝒗𝒏𝒆𝒘
 

(6) 

The aggregated slope magnitude 𝑚𝑖  and 

angle 𝑎𝑖 are then obtained with the standard 

Kalman update step from the previous time 

step and new measurements 𝑚𝑛𝑒𝑤 and 𝑎𝑛𝑒𝑤.  
 

 

𝒎𝒊 = 𝒎𝒊−𝟏 ∗ (𝟏 − 𝒌𝒎,𝒊)

+ 𝒎𝒏𝒆𝒘 ∗ 𝒌𝒎,𝒊 (7) 

 

𝒂𝒊 = 𝒂𝒊−𝟏 ∗ (𝟏 − 𝒌𝒂,𝒊) + 𝒂𝒏𝒆𝒘

∗ 𝒌𝒂,𝒊 (8) 

 

The variance for the next timestamp is then 

computed. 

 

 𝒗𝒎,𝒊+𝟏 = (𝟏 − 𝒌𝒎,𝒊) ∗ 𝒗𝒎,𝒊 (9) 

 𝒗𝒂,𝒊+𝟏 = (𝟏 − 𝒌𝒂,𝒊) ∗ 𝒗𝒂,𝒊 (10) 

 

Aggregating gradients instead of direct 

heights confers robustness against abrupt 

inaccuracies in roll and pitch as well as long-

term drift. The slopes computed in this 

manner require several observations to be 

detected and to protect against exaggerated 

slopes due to object points being erroneously 

included in the ground point cloud. In 

practice this method has generated accurate 

slope values in a wide variety of 

environments. The slope data is output in a 

layered cost map for visualization and 

debugging, with slope magnitude and 

direction represented in different layers. 

 

3.2 Lethal Slope Cost Map 
Accurate slopes can be used for a wide 

variety of path following and navigation uses. 

The most basic navigation use-case is to 

identify regions where terrain is too steep to 
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traverse. To serve this use-case, a cost map is 

published with obstacles corresponding to 

cells with a slope magnitude above a user-

configurable threshold. 

    Opening and closing image morphological 

operations are applied to the lethal slope cost 

map using a kernel size that is approximately 

the size of the vehicle to clean up any outlier 

obstacles and ensure that feature sizes are 

appropriate for planning. This lethal slope 

cost map effectively identifies slopes too 

steep to traverse. Terrain structures smaller 

than the kernel size are designed to be 

segmented as objects and handled 

accordingly; however, traversable areas with 

dense vegetation can appear to be steep 

slopes, and thus exclude valid areas. While 

improving the LiDAR hardware and 

accuracy of the segmentation algorithm in 

differentiating between vegetation and 

ground would help, if the vegetation is 

sufficiently dense, no LiDAR points will 

penetrate to the ground. We thus implement 

a heuristic to identify regions where 

vegetation of increasing height generates 

false slopes. 

The LiDAR point clouds contain surface 

roughness data, a measure of the smoothness 

of the ground in the range [0,1]. It is 

discretized into cells, hole filled, and 

smoothed identically to the ground height. 

However, roughness is aggregated directly 

via 1-dimensional Kalman update, and the 

roughness gradient is taken using 3x3 Sobel 

operator on the aggregated roughness. The 

roughness corresponds approximately to 

vegetation depth, and a high roughness 

gradient to areas where vegetation depth is 

increasing. For a lethal slope, if the roughness 

gradient magnitude is above a tunable 

threshold, and the roughness gradient aligns 

sufficiently with the slope gradient, then the 

slope is likely false and is filtered out of the 

lethal slope cost map. 

 
Figure 1: Vegetation-caused false slopes (pink) 

filtered from lethal slopes (red)  

In practice, this heuristic proves highly 

effective at filtering our false slopes. It is 

however prone to two types of errors.  It may 

erroneously filter out actual slopes if they 

contain vegetation of increasing height 

growing on top, or it may fail to completely 

filter out false slopes. Both cases have been 

observed while testing in unstructured 

environments with complex vegetation, but 

their occurrence is rare enough that this 

filtering is considered an improvement on the 

unaltered lethal slope map. 

The lethal slope cost map is sent to a cost 

map aggregation process to be fused with 

other cost maps normally produced in RTK. 

This aggregated cost map can then be 

consumed by the navigation system and 

utilized in existing path planners. 

 

4. EXPERIMENTAL TESTING 
Slope generation was tested in a suburban 

street and several unstructured offroad 

environments. A set of tests are presented 

here to demonstrate the behavior in varied 

environments. In each test, a camera image of 

the environment conditions is present along 

with a component of the slope map generated 

in that environment. The slope map images 

represent the magnitude of the terrain 

gradient calculated in a 50 meter by 50 meter 

grid around the vehicle. Traversable slopes 

are encoded with a grayscale value, with 

slope magnitude increasing from light to dark 

gray. All slopes above the user-configurable 
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lethality threshold, set here to 16.7°, are 

highlighted in pink or red. Potentially 

traversable vegetation is highlighted by the 

light pink regions in the map and 

untraversable slopes are highlighted in red. 

 

Test 1: Suburban Street 
In the first test scenario, the vehicle was 

driven on a two-lane suburban road. An 

image of the road to the left side of the 

vehicle and the corresponding slope 

magnitude map are shown in Figure 2 and 

Figure 3 respectively. 
 

 

 
Figure 3: Slope magnitude map for the suburban 

street environment 

 

In the slope magnitude map, numerous 

environment features can be observed. Curbs 

appear as traversable grade along the edges 

of the smooth road. The map correctly 

identifies a drainage ditch downhill from the 

vehicle as an untraversable, or lethal, area. 

 

Test 2: Large Slopes, Minimal 
Vegetation 

The second test scenario shown in Figure 4 

and Figure 5 is an offroad environment with 

sparse vegetation and increasing grade on 

either side of the vehicle. 

 

 
Figure 4: Test environment with large slopes and 

minimal vegetation 

 
Figure 5: Slope magnitude map for test environment 

with large slopes and minimal vegetation 

The large slopes in the top and bottom of the 

slope map in Figure 5 are clearly visible and 

considered untraversable by the vehicle. In 

this case, the drivable corridor is highlighted 

well by the slope map directly. Augmenting 

an off-road path planner with this 

information would likely keep the vehicle 

centered on the same path a human driver 

would naturally take. 

Figure 2: Suburban street test environment 
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Test 3: Large Slopes, Substantial 
Vegetation 

The third test scenario, shown in Figure 6 

and Figure 7 depicts an area with large 

impassible berms, covered in dense 

vegetation, that surround a small square 

clearing. 
 

 
Figure 6: Test environment with large slopes and 

substantial vegetation 

 
Figure 7: Slope magnitude map for test environment 

with large slopes and substantial vegetation 

The top area of the slope map in Figure 7 

appears empty because of obstacle occlusions 

in the LiDAR data, an intrinsic limitation of 

the sensor. Note that the slope map correctly 

identifies the grassy non-slope areas in the 

paths near the entry and exit to this area. 

These cells are identified correctly as 

drivable terrain using the proposed filtering 

method but would be misclassified as 

impassible slopes or “bumps” when using 

only the height map gradient information. 

The berms are clearly identified and bounded 

in this environment for areas with valid 

LiDAR returns. 

 

Test 4: Cluttered Slopes 
The fourth test scenario was conducted in 

an unstructured off-road environment with 

cluttered vegetation of varying heights and 

traversability. This environment is shown in 

Figure 8 and Figure 9. 

 
Figure 8: Test environment with cluttered terrain 

 

 
Figure 9: Slope magnitude map for test environment 

with cluttered terrain 

Note that some false slopes appear on the 

boundary between the vegetation and actual 

terrain grade in this environment. This test 

demonstrates a limitation of the vegetation 

filtering, though erroneous regions usually 

occur in heavy vegetation and are avoided as 
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normal obstacles or high-cost areas in the 

cost map. 

 

Test 5: Negative Slopes 
In the fifth test scenario, the vehicle was 

driven on a large natural bridge area with 

steep, negative grade on either side. 

 
Figure 10: Test environment with negative slopes on 

either side of the vehicle 

 

 
Figure 11: Slope magnitude map for test 

environment with negative slopes 

This test clearly demonstrates that negative 

slopes are detected and could be planned 

around, though their visibility is limited due 

to the LiDAR positions on the vehicle. 

 

Test 6: Path Planning Around Lethal 
Slopes 

In the sixth test scenario, the vehicle was 

given a waypoint mission in an area with both 

traversable and untraversable terrain. The 

goal waypoint was intentionally set on the 

opposite side of a large berm, visible in 

Figure 12, from the RTK vehicle’s starting 

position. The Maverick path planner was 

used to plan to the goal waypoint, utilizing 

the traversability information provided by the 

slope map as a part of the planner’s normal 

input. Maverick is an RRT*-based anytime 

planner that respects vehicle kinematic 

constraints and is capable of fast replanning 

[7]. This planner has been extensively tested 

in RTK and works in a variety of off-road 

scenarios. 

 

 
Figure 12: Maverick slope planning test environment 

 

 
Figure 13: RTK cost map and overlayed slope map 

with Maverick plan through lethal slope 
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Figure 14: Slope magnitude map and Maverick plan 

to avoid lethal slope 

The maps shown in Figure 13 and Figure 14 

contain the Maverick planner’s generated 

path from the vehicle start position to the goal 

waypoint position as the curve in blue. Figure 

13 shows the slope map for the test 

environment with all slopes artificially 

considered non-lethal. Without incorporating 

the slope data as a cost, Maverick plans 

directly through an area usually classified as 

lethal slope. Figure 14 shows the same test 

scenario, but with the slope information 

included in the cost map sent to Maverick. 

The generated plan for this run now avoids 

the lethal slope area completely. This test 

demonstrates that the slope map information 

successfully improves navigation 

performance for an existing path planner in 

RTK. 

 

5. CONCLUSIONS 
 

Existing Progress 
The method outlined in this paper 

accurately models the terrain slopes in 

environments with varied amounts of 

vegetation and complexity. Small features 

such as curbs are visible, larger hills are 

represented, and sufficiently steep slopes are 

treated as obstacles and avoided. Erroneous 

slopes in the map appear due to dense 

vegetation but are filtered out of the lethal 

slope cost map. 

 

Future Work 
The traversability mapping method has 

room for improvement. The computational 

load could be further reduced by utilizing 

optimized image convolution routines. The 

vegetation filtering heuristic can be 

improved, although more advanced LiDAR 

and changes to the ground segmentation 

pipeline may render such improvement 

unnecessary. 

The slope data can also be integrated into 

many other parts of the RTK system for 

improved behavior. Slopes can be used to 

inform path planning, as certain slopes must 

be traversed at slower speeds. The motion 

execution modules could factor slopes into 

acceleration commands, to better summit 

slopes and minimize orthogonal acceleration 

during turns. New advanced behaviors could 

use slopes to identify regions to use as cover, 

to block line-of-sight from adversaries, or to 

better survey unexplored regions. 

 

6. REFERENCES 
 

[1]  M. W. McDaniel, T. Nishihata, C. A. 

Brooks and K. Iagnemma, "Ground 

Plane Identification Using LIDAR in 

Forested Environments," in IEEE 

International Conference on Robotics 

and Automation, Anchorage, 2010.  

[2]  A. Nguyen, N. Nguyen, K. Tran, E. 

Tjiputra and Q. D. Tran, "Autonomous 

Navigation in Complex Environments 

with Deep Multimodal Fusion 

Network," in IEEE/RSJ International 

Conference on Intelligent Robots and 

Systems (IROS), Las Vegas, 2020.  

[3]  D. C. Guastella and G. Muscato, 

"Learning-Based Methods of 

Perception and Navigation for Ground 

Vehicles in Unstructured 



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Creation of a Ground Slope Mapping Methodology Within the Robotic Technology Kernel for Improved Navigation 

Performance, Ramsey, et al. 

 

Page 10 of 10 

Environments: A Review," Sensors, 

vol. 21, no. 1, p. 73, 2021.  

[4]  D. Andujar, V. Rueda-Ayala, H. 

Moreno, J. R. Rosell-Polo, A. Escola, 

C. Valero, R. Gerhards, C. Fernandez-

Quintanilla, J. Dorado and H.-W. 

Griepentrog, "Discriminating Crop, 

Weeds and Soil Surface with a 

Terrestrial LIDAR Sensor," Sensors, 

vol. 13, pp. 14662-14675, 2013.  

[5]  C. Goodin, L. Dabbiru, C. Hudson, G. 

Mason, D. Carruth and M. Doude, "Fast 

Terrain Traversability Estimation with 

Terrestrial Lidar in Off-road 

Autonomous Navigation," in SPIE 

11758, Unmanned Systems Technology 

XXIII, 2021.  

[6]  T. Shan, W. Jinkun, B. Englot and K. 

Doherty, "Bayesian Generalized Kernel 

Inference for Terrain Traversability 

Mapping," in Conference on Robotic 

Learning, Zürich, 2018.  

[7]  N. Seegmiller, J. Gassaway, E. 

Johnson and J. Towler, "The Maverick 

Planner: An Efficient Hierarchical 

Planner for Autonomous Vehicles in 

Unstructured Environments," in 

IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), 

Vancouver, 2017.  

 

 

 

 


